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Abstract

Basic equilibrium properties of Lattice Boltzmann (LB) fluid mixtures (coexistence
curve, surface tension, and interfacial profile) are calculated to characterize the crit-
ical phenomena occurring in these model liquids and to establish a reduced variable
description allowing a comparison with real fluid mixtures. We observe mean-field
critical exponents and amplitudes so that the LB model may be useful for model-
ing high molecular weight polymer blends and other fluid mixtures that are usually
approximated over a wide temperature range by mean-field theory.

1. Introduction

In many applications involving materials processing it is necessary to understand and control
the morphology of multiphase fluid mixtures and particulate dispersions subject to a complex
flow history. These applications often involve free liquid-air boundaries, phase separation
processes, solid boundaries which can preferentially wet certain liquid components, thin-
film geometries, complex solid substrate geometries, and high Reynolds number flows. The
development of computational methods of sufficient flexibility and generality to treat such
realistic fluid dynamics problems is a basic theoretical challenge.

The Lattice Boltzmann (LB) method [1], and other related computational methods based
on cellular-automata ideas (e.g., lattice gas) [1], have emerged as powerful tools for model-
ing complex fluid dynamics problems. These methods are being developed very rapidly in
response to recent theoretical advances and the availability of resources for large scale com-
putation. Many studies have emphasized the development of the LB methodology and have
not considered a direct comparison to the properties of real liquids. Basic characteristics of
these computational models of liquids are still, therefore, largely unknown. In this paper we
characterize the type of critical phenomena observed in the Shan and Chen [2] LB model
of multicomponent liquids. This model allows for the direct incorporation of fluid-fluid and
fluid-solid interactions as well as general external applied forces. We calculate basic equilib-
rium propertics (coexistence curve, surface tension, interfacial width and correlation length)
and express our results in terms of a reduced variables description that allows comparison
with real fluid measurements.

2. Lattice Boltzmann Model of Fluid Phase Separation

The LB method of modeling fluid dynamics is actually a family [1] of models with varying
degrees of faithfulness to the properties of real liquids. These methods are currently in a state
of evolution as the models become better understood and corrected for various deficiencies.
In the present work we utilize a version of LB proposed by Shan and Chen [2,3] that is
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particularly simple in form and adaptable to complex flow conditions (presence of solid-fluid
and air-fluid boundaries).

The approach of LB is to consider a typical volume element of fluid to be composed
of a collection of particles that are represented in terms of a particle velocity distribution
function at each point in space. The velocity distribution, n’ (x,t), is the amount of particles
at node x, time ¢ and velocity, e,, where (a = 1,...,b) indicates the velocity direction and
superscript 4 labels the fluid component. The time is counted in discrete time steps, and the
fluid particles can collide with each other as they move under applied forces.

For this study we use the D3Q19 (3 Dimensional lattice with b=19) [4] lattice. The
units of e, are the lattice constant divided by the time step. Macroscopic quantities such as
the density, n(x,t), and the fluid velocity, u', of each fluid component, ¢, are obtained by
taking suitable moment sums of n’(x,¢). Note that while the velocity distribution function
is defined only over a discrete set of velocities, the actual macroscopic velocity field of the
fluid is continuous.

The time evolution of the particle velocity distribution function satisfies the following LB
equation:

nt(x + e, + 1) — ni(x,t) = Q(x, ), (1)

where (2! is the collision operator representing the rate of change of the particle distribu-
tion due to collisions. The collision operator is greatly simplified by use of the single time
relaxation approximation [5,6]

. 1 ;. .
Q) = —— [ny(x,1) =m0 (x,1)] (2)
where ni(®9(x,t) is the equilibrium distribution at (x,t) and 7; is the relaxation time that
controls the rate of approach to equilibrium. The equilibrium distribution can be represented
in the following form for particles of each type [3,6]:

nie(x) = t,n'(x) [g(l —do) +3e,-V+ g(Beaea IVV — vz)} (3)
i(eq) _ [ . § 2 4
nyy (x) = t1en'(x) |3d, 2v , (4)
where s ;
v = Zi m Za naea/Ti (5)

¥ mint(x)/m
and where m’ is the molecular mass of the ith component, and ¢, = 1/36 for 1 < a < 12,
ty = 1/18 for 13 < a < 18 and t;9 = 1/3 . The free parameter d, can be related to an effective
temperature, T', for our system by the following moment of the equilibrium distribution:

Pa 10 (x, t) (€0 — V)*
3ni(x,t) ’ ()

which results in T = (1 — d,)/2 (we take units such that the Boltzmann constant k, = 1).

T(x,t) =



1t has been shown that the above formalism leads to a velocity field that is a solution of

22 C'T' z

the Navier-Stokes [5] equation with the kinematic viscosity, v = ¢ where ¢; is the

concentration of each component [6].
2.1 Interaction Potential

In order to model the phase separation of fluids an interaction between the fluids is

needed to drive them apart. Here a force, dp”

-(x), between the two fluids is introduced which
effectively perturbs the equilibrium velocity [2,3]

i

i ! i dp
n GV (x) = n'v(x) + 7 (%) ™)

where v’ is the new velocity used in Egs. [3] and [4]. We use a simple interaction that
depends on the density of each fluid, as follows:

dp
dt = Z Z Gu,n X+ e,)e, (8)

with G2, = 2G for |e*| = 1;G% = G for le?| = v/2; and G, =0 for i = i'. G is a constant
which controls the strength of interaction. Clearly, the forcing term is related to the density
gradient of the fluid. It has been shown that the above forcing term can drive the phase
separation process and naturally produce an interfacial surface tension effect consistent with
the Laplace law boundary condition [3].

In this model, phase separation takes place when the mutual diffusivity of the binary
mixture becomes negative. An analytical expression for the mutual diffusivity has been
determined in a previous work [6]. For the case of a critical composition the condition for
the system studied to undergo phase separation is G > Wn{LTﬂ

3. Coexistence Curve for LB Mixture

For a sufficiently large interaction G the LB mixtures of components A and B phase
separate into liquids having coexisting compositions ¢4 and ¢z at equilibrium. The compo-
sition variables ¢4 and ¢p denote the relative volume fractions of the two fluid components
(pa +¢p=1).

Increasing G makes the coexisting compositions more enriched in the pure components,
thus having the same qualitative effect as lowering the temperature in systems exhibiting
an upper critical temperature type phase separation (i.e. phase separation upon cooling).
The parameter G thus plays a role similar to the van Laar or Hildebrand binary interac-
tion parameter in the regular solution theory of fluids. We define a dimensionless coupling
constant,xg = G/KpT. A reduced ‘temperature scale’ may then be defined from the inter-
action coupling constant, xg,7¢ = (I/G — T/G.)/(T/G.), for our simulation performed at
fixed temperature T and variable G.

In Fig. 1 we present our results for the phase separation of a symmetric LB fluid mixture
(mass and viscosity ratios of fluid components are equal). The composition difference A¢ =

(,i) - qbsf) between the coexisting phases defines an order-parameter for the fluid phase
separation process and the relation of A¢ to the reduced temperature is indicative of the type
of critical phenomena (‘universality class’) under discussion. Tn a mean-field model of fluid
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Figure 1: Phase diagram for critical binary mixture. The y-axis denotes the reciprocal of
the dimensionless coupling, 1/x¢, and the x-axis denotes the composition ¢4 of the A fluid.
The data point at 1/xe = 1 is the theoretical prediction and is given for reference.

phase separation A¢ is described by the general relation, A¢ = 2B7r# 7 = (T - T.)/T,, T ~
T., where the order parameter exponent 3 = 1/2 and critical amplitude B = v3/2. The
mean-field theory prediction is examined in Fig. 2 where we plot log A¢ versus log 7¢ for the
lattice data shown in Fig. 1. It is apparent that a power law scaling of A¢ on 7¢ is observed
over an appreciable temperature range. The solid line corresponds to 8 = 0.5 with no
free parameters where 7 is equated with 7¢. Estimates of the value of the amplitude B with
B =1/2 gave B = 0.87+0.01 which is compared with the theoretical value v3/2 = 0.8660....
Note that the critical temperature is not adjustable in this comparison, in contrast to most
simulations and experiments where this quantity is not known exactly.

Figures 1-2 not only verify that the phase separation process in LB fluids is well described
by analytic mean-ficld theory, but they also establish the utility of our definition of reduced
temperature scale required for other applications involving LB fluid mixtures. For example,
we can quantify the quench depth of our phase separation measurements by specifying the
76 value so that these simulations can be compared to experiments on real fluids at the same
value, 7¢ = 7. Of course, quantitative agreement with the properties of real liquids can only
be expected for liquids that can be modeled by mean-field theory over a broad temperature
range. Strictly speaking, no real fluids are described by mean-field critical behavior, but for
many fluids the approximation should be reasonable provided 7 is sufficiently far from the
critical point (7 = 0%).

4. Interfacial Tension ,

Interfacial tension measurements provide a direct means of probing the interaction be-
tween fluids. This property is crucial, in an industrial context, for controlling the size and
phase stability of mechanically dispersed droplets and other transient structures formed by

phase separation processes. In principle, interfacial tension provides a conceptually simple
means of determining the reduced temperature variable 7 = (T' — T,)/T, needed to charac-
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Figure 2: Power-law scaling of the order parameter A¢ with respect to the reduce tempera-
ture 7.

terize the phase stability of mixtures, but experimental complications (e.g. high viscosity
in polymeric systems) have limited somewhat the application of this method to the critical
phenomena of fluid mixtures.

We calculate the interfacial tension by an integration of the interfacial composition profile,
o = [(Py — Pr)dz, where Py and Pp are the normal and tangential parts of the pressure
tensor. The calculated values of o (Fig. 3) are consistent with a power law where o = 0,755
with 0y = 4.16 over a broad temperature range. The exponent of 1.5 is a general result of
mean-field theories of interfacial tension. Again we find good consistency between the LB
model of fluid phase separation and the prediction of mean-ficld theory.

5. Composition Interfacial Profile and Correlation Length

The interface between phase separated liquids becomes diffuse near a critical point where
the interfacial tension becomes relatively low. The width of this interface can be quantified
through the determination of the composition interfacial profile, ¢4(z), which measures the
local composition along a coordinate, z, normal to an interface between coexisting phases.
We found the numerically determined profile ¢4(z) fits well to the mean-field theory pre-
diction ¢4(2) = ¢ + (Ad/2)tanh(z/w) for all 7¢. The parameter, w, corresponds to an
interfacial width. The correlation length £~ of the fluid mixture in the two-phase mixture is
related to w by the definition 26~ = w so that the determination ¢4(z) affords a means of
determining the basic property €. A fit to the w simulation data gave {~ = (0.96:£0.01)75",
where the mean-field value of the exponent v = 1/2 is assumed.

6. Conclusion

Lattice Boltzmann methods of simulating flows in multiphase liquids have developed
rapidly in recent ycars and the time has come to evaluate the critical phenomena that
characterize their basic thermodynamic and hydrodynamic properties. We have performed
numerical experiments on those model fluid systems to determine the equilibrium critical
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Figure 3: Power-law scaling of the surface tension ¢ with respect to reduced temperature 7.

properties that are most important for comparison with real fluids. The results of those sim-
ulations are represented in a reduced variable description that is largely independent of the
particulars of the model, facilitating comparisons with other models of fluid mixture critical
phenomena and with experiment. This type of representation should also be advantageous
in expressing experimental measurements in a model independent form. Our observations
indicate that the critical properties (coexistence curves correlation length, interfacial profile,
surface tension) of the LB fluid correspond to an ideal mean-field fluid over a broad range of
temperature. This makes comparison of the model particularly appropriate to high molec-
ular weight polymer blends and other fluid mixtures which can be reasonably modeled by
mean-field theory.

Nicos S. Martys would like to acknowledge partial support from the National Institute
of Standards and Technology Center for Theoretical and Computational Materials Science.
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